
Should all Machine Learning be Bayesian?
Should all Bayesian models be non-parametric?

Zoubin Ghahramani

Department of Engineering
University of Cambridge, UK

zoubin@eng.cam.ac.uk
http://learning.eng.cam.ac.uk/zoubin/

BARK 2008



Some Canonical Machine Learning Problems

• Linear Classification

• Nonlinear Regression

• Clustering with Gaussian Mixtures (Density Estimation)



Example: Linear Classification

Data: D = {(x(n), y(n))} for n = 1, . . . , N
data points

x(n) ∈ R
D

y(n) ∈ {+1,−1}
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Parameters: θ ∈ RD+1

P (y(n) = +1|θ,x(n)) =

 1 if
D∑

d=1

θd x
(n)
d + θ0 ≥ 0

0 otherwise

Goal: To infer θ from the data and to predict future labels P (y|D,x)



Basic Rules of Probability

P (x) probability of x
P (x|θ) conditional probability of x given θ
P (x, θ) joint probability of x and θ

P (x, θ) = P (x)P (θ|x) = P (θ)P (x|θ)

Bayes Rule:

P (θ|x) =
P (x|θ)P (θ)

P (x)
Marginalization

P (x) =
∫

P (x, θ) dθ



Bayes Rule Applied to Machine Learning

P (θ|D) =
P (D|θ)P (θ)

P (D)

P (D|θ) likelihood of θ
P (θ) prior probability of θ
P (θ|D) posterior of θ given D

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =
∫

P (D|θ, m)P (θ|m) dθ

Prediction:

P (x|D,m) =
∫

P (x|θ,D,m)P (θ|D,m)dθ



That’s it!



Should all Machine Learning be Bayesian?

• Why be Bayesian?

• Where does the prior come from?

• How do we do these integrals?



Representing Beliefs (Artificial Intelligence)

Consider a robot. In order to behave intelligently
the robot should be able to represent beliefs about
propositions in the world:

“my charging station is at location (x,y,z)”

“my rangefinder is malfunctioning”

“that stormtrooper is hostile”

We want to represent the strength of these beliefs numerically in the brain of the
robot, and we want to know what rules (calculus) we should use to manipulate
those beliefs.



Representing Beliefs II

Let’s use b(x) to represent the strength of belief in (plausibility of) proposition x.

0 ≤ b(x) ≤ 1
b(x) = 0 x is definitely not true
b(x) = 1 x is definitely true
b(x|y) strength of belief that x is true given that we know y is true

Cox Axioms (Desiderata):

• Strengths of belief (degrees of plausibility) are represented by real numbers
• Qualitative correspondence with common sense
• Consistency

– If a conclusion can be reasoned in more than one way, then every way should
lead to the same answer.

– The robot always takes into account all relevant evidence.
– Equivalent states of knowledge are represented by equivalent plausibility

assignments.

Consequence: Belief functions (e.g. b(x), b(x|y), b(x, y)) must satisfy the rules of
probability theory, including Bayes rule.

(Cox 1946; Jaynes, 1996; van Horn, 2003)



The Dutch Book Theorem

Assume you are willing to accept bets with odds proportional to the strength of your
beliefs. That is, b(x) = 0.9 implies that you will accept a bet:{

x is true win ≥ $1
x is false lose $9

Then, unless your beliefs satisfy the rules of probability theory, including Bayes rule,
there exists a set of simultaneous bets (called a “Dutch Book”) which you are
willing to accept, and for which you are guaranteed to lose money, no matter
what the outcome.

The only way to guard against Dutch Books to to ensure that your beliefs are
coherent: i.e. satisfy the rules of probability.



Asymptotic Certainty

Assume that data set Dn, consisting of n data points, was generated from some
true θ∗, then under some regularity conditions, as long as p(θ∗) > 0

lim
n→∞

p(θ|Dn) = δ(θ − θ∗)

In the unrealizable case, where data was generated from some p∗(x) which cannot
be modelled by any θ, then the posterior will converge to

lim
n→∞

p(θ|Dn) = δ(θ − θ̂)

where θ̂ minimizes KL(p∗(x), p(x|θ)):

θ̂ = argmin
θ

∫
p∗(x) log

p∗(x)
p(x|θ)

dx = argmax
θ

∫
p∗(x) log p(x|θ) dx

Warning: careful with the regularity conditions, these are just sketches of the theoretical results



Asymptotic Consensus

Consider two Bayesians with different priors, p1(θ) and p2(θ),
who observe the same data D.

Assume both Bayesians agree on the set of possible and impossible values of θ:

{θ : p1(θ) > 0} = {θ : p2(θ) > 0}

Then, in the limit of n → ∞, the posteriors, p1(θ|Dn) and p2(θ|Dn) will converge
(in uniform distance between distibutions ρ(P1, P2) = sup

E
|P1(E)− P2(E)|)

coin toss demo: bayescoin



Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m′, using posterior probabilities given D:

p(m|D) =
p(D|m) p(m)

p(D)
, p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretation of the Marginal Likelihood (“evidence”): The probability that
randomly selected parameters from the prior would generate D.

Model classes that are too simple are
unlikely to generate the data set.

Model classes that are too complex can
generate many possible data sets, so
again, they are unlikely to generate that
particular data set at random.

too simple

too complex

"just right"

All possible data sets of size n

P
(D

|m
)

D



Potential advantages of Bayesian Machine Learning
over alternatives

• tries to be coherent and honest about uncertainty

• easy to do model comparison, selection

• rational process for model building and adding domain knowledge

• easy to handle missing and hidden data

Disadvantages: to be discussed later :-)



Where does the prior come from?

• Objective Priors: noninformative priors that attempt to capture ignorance and
have good frequentist properties.

• Subjective Priors: priors should capture our beliefs as well as possible. They
are subjective but not arbitrary.

• Hierarchical Priors: multiple levels of priors:

p(θ) =
∫

dα p(θ|α)p(α)

=
∫

dα p(θ|α)
∫

dβ p(α|β)p(β) (etc...)

• Empirical Priors: learn some of the parameters of the prior from the data
(“Empirical Bayes”)



Subjective Priors

Priors should capture out beliefs as well as possible.

Otherwise we are not coherent.

How do we know our beliefs?

• Think about the problems domain (no black box view of machine learning)

• Generate data from the prior. Does it match expectations?

Even very vague beliefs can be useful.



Two views of machine learning

• The Black Box View
The goal of machine learning is to produce general purpose black-box algorithms
for learning. I should be able to put my algorithm online, so lots of people can
download it. If people want to apply it to problems A, B, C, D... then it should
work regardless of the problem, and the user should not have to think too much.

• The Case Study View
If I want to solve problem A it seems silly to use some general purpose method
that was never designed for A. I should really try to understand what problem A
is, learn about the properties of the data, and use as much expert knowledge as
I can. Only then should I think of designing a method to solve A.



Bayesian Black Boxes?

Can we meaningfully create Bayesian black-boxes?
If so, what should the prior be?
This seems strange... clearly we can create black boxes, but how can we advocate
people blindly using them?
Do we require every practitioner to be a well-trained Bayesian statistician?



Parametric vs Nonparametric Models

Terminology (roughly):

• Parametric Models have a finite fixed number of parameters θ, regardless of
the size of the data set. Given θ, the predictions are independent of the data D:

p(x,θ|D) = p(x|θ) p(θ|D)

The parameters are a finite summary of the data. We can also call this
model-based learning (e.g. mixture of k Gaussians)

• Non-parametric Models allow the number of “parameters” to grow with the
data set size, or alternatively we can think of the predictions as depending on the
data, and possible a usually small number of parameters α

p(x|D, α)

We can also call this memory-based learning (e.g. kernel density estimation)



Example: Clustering

Basic idea: each data point belongs to a cluster

Many clustering methods exist:

• mixture models

• hierarchical clustering

• spectral clustering

Goal: to partition data into groups in an unsupervised manner



Infinite mixture models
(e.g. Dirichlet Process Mixtures)

Why?

• You might not believe a priori that your data comes from a finite number of
mixture components (e.g. strangely shaped clusters; heavy tails; structure at
many resolutions)

• Inflexible models (e.g. a mixture of 6 Gaussians) can yield unreasonable inferences
and predictions.

• For many kinds of data, the number of clusters might grow over time: clusters
of news stories or emails, classes of objects, etc.

• You might want your method to automatically infer the number of clusters in the
data.



Is non-parametrics the only way to go?

• When do we really believe our parametric model?

• But, when do we really believe or non-parametric model?

• Is a non-parametric model (e.g. a DPM) really better than a large parametric
model (e.g. a mixture of 100 components)?



The Approximate Inference Conundrum

• All interesting models are intractable.

• So we use approximate inference (MCMC, VB, EP, etc).

• Since we often can’t control the effect of using approximate inference, are
coherence arguments meaningless?

• Is Subjective Bayesianism pointless?



Reconciling Bayesian and Frequentist Views

Frequentist theory tends to focus on sampling properties of estimators, i.e. what
would have happened had we observed other data sets from our model. Also look
at minimax performance of methods – i.e. what is the worst case performance if
the environment is adversarial. Frequentist methods often optimize some penalized
cost function.

Bayesian methods focus on expected loss under the posterior. Bayesian methods
generally do not make use of optimization, except at the point at which decisions
are to be made.

There are some reasons why frequentist procedures are useful to Bayesians:

• Communication: If Bayesian A wants to convince Bayesians B, C, and D of the validity of some

inference (or even non-Bayesians) then he or she must determine that not only does this inference

follows from prior pA but also would have followed from pB, pC and pD, etc. For this reason it’s

useful sometimes to find a prior which has good frequentist (sampling / worst-case) properties,

even though acting on the prior would not be coherent with our beliefs.

• Robustness: Priors with good frequentist properties can be more robust to mis-specifications of

the prior. Two ways of dealing with robustness issues are to make sure that the prior is vague

enough, and to make use of a loss function to penalize costly errors.

also, recently, PAC-Bayesian frequentist bounds on Bayesian procedures.



Cons and pros of Bayesian methods

Limitations and Criticisms:

• They are subjective.
• It is hard to come up with a prior, the assumptions are usually wrong.
• The closed world assumption: need to consider all possible hypotheses for the

data before observing the data.
• They can be computationally demanding.
• The use of approximations weakens the coherence argument.

Advantages:

• Coherent.
• Conceptually straightforward.
• Modular.
• Often good performance.



How can we convert the pagan majority of ML researchers to
Bayesianism?

Some suggestions:

• Killer apps

• Win more competitions

• Dispel myths, be more proactive, aggressive

• Release good easy to use black-box code

• ??


